# Flash vacuum pyrolysis of stabilised phosphorus ylides. Part $17 .{ }^{1}$ Preparation of aliphatic amino acid derived $\gamma$-alkoxycarbonyl-amino- $\beta$-oxo ylides and pyrolysis to give $\alpha, \beta$-acetylenic $\gamma$-amino acid and GABA analogues 

R. Alan Aitken, ${ }^{* a}$ Nazira Karodia, ${ }^{a}$ Tracy Massil ${ }^{a}$ and Robert J. Young ${ }^{b}$<br>${ }^{\text {a }}$ School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, UK KY16 9ST<br>${ }^{b}$ GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK SG1 2NY

Received (in Cambridge, UK) 12th November 2001, Accepted 19th December 2001
First published as an Advance Article on the web 21st January 2002


#### Abstract

A series of eleven $\alpha$-aminoacyl stabilised phosphorus ylides 9-19 have been prepared by condensation of $N$-alkoxycarbonyl protected amino acids with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ using a carbodiimide peptide coupling reagent. Upon flash vacuum pyrolysis at $600^{\circ} \mathrm{C}$, these undergo extrusion of $\mathrm{Ph}_{3} \mathrm{PO}$ to give the corresponding $\alpha, \beta$-acetylenic $\gamma$-amino esters 21-29, 33 and $\mathbf{3 4}$ in moderate yield. In two cases the terminal alkynes $\mathbf{3 0}$ and $\mathbf{3 1}$ are also formed. The $\beta$-aminoacyl ylide 20 from $\beta$-alanine similarly gives the $\alpha, \beta$-acetylenic $\delta$-amino ester $\mathbf{3 5}$ upon pyrolysis. Regioselective addition of HBr to the triple bond of one acetylenic ester $\mathbf{2 5}$ was observed giving a mixture of $E$ and $Z \alpha$-bromoacrylates 36. Hydrogenation of the $N$-Cbz acetylenic esters 21-23 and $\mathbf{3 3}$ results in N -deprotection and hydrogenation of the triple bond to afford the chiral GABA analogues 37-40 in $70->95 \%$ ee as determined by ${ }^{19} \mathrm{~F}$ NMR of their Mosher amides. Fully assigned ${ }^{13} \mathrm{C}$ NMR spectra of all the ylides and acetylenic ester derivatives are presented.


In previous Parts of this series we have shown that flash vacuum pyrolysis (FVP) of oxo stabilised phosphorus ylides provides a useful route for synthesis of a wide variety of alkynes. ${ }^{2}$ Since the ylides are readily formed by acylation with an acid chloride or the equivalent we were interested to extend the method to ylides $\mathbf{1}$ derived from amino acids. As shown, this is expected to give chiral amino acid analogues in which the acid group is either spaced out from the $\alpha$-centre by a $\mathrm{C} \equiv \mathrm{C}$ unit as in 2 or, using our previous discovery that higher temperature FVP results in loss of the ester group, ${ }^{3}$ replaced by $\mathrm{C} \equiv \mathrm{CH}$ as in 3. In Part 7, we described the synthesis of aminoacyl ylides 4 with nitrogen protected in the form of the thermally robust phthalimide but these underwent loss of $\mathrm{Ph}_{3} \mathrm{PO}$ in an unexpected way upon FVP to give the pyrroloisoindolediones 5. ${ }^{4}$




DOI: 10.1039/b110243e

Relatively few compounds of structure $\mathbf{2}$ and $\mathbf{3}$ have been prepared before, ${ }^{5}$ but they are of considerable importance as potential mechanism-based inhibitors of medicinally important enzymes. ${ }^{6}$ In particular, $2\left(\mathrm{R}^{2}=\mathrm{H}\right)$ and a number of $N$ substituted analogues have been shown to be effective GABA mimics, ${ }^{7}$ and related compounds have been proposed for the therapeutic treatment of alcoholism and as anti-tumour agents. ${ }^{8}$ The propargylamine (prop-2-ynylamine) $\mathbf{3}\left(\mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}\right.$ $\mathrm{NH}_{2}$ ) and analogues have been shown to be selective irreversible inhibitors of ornithine decarboxylase and thus to have potential anti-tumour activity, ${ }^{9}$ while $3\left(\mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}\right)$ and related compounds effectively inhibit GABA aminotransferase and may be used for the treatment of epilepsy. ${ }^{10}$

We describe here the synthesis of aminoacyl ylides with the amino function protected by apparently more labile alkoxycarbonyl groups and their successful transformation using FVP into a range of acetylenic amino ester products. ${ }^{11}$

## Results and discussion

Using the method developed by Wasserman, ${ }^{12}$ a range of $N$ benzoxycarbonyl and $N$-ethoxycarbonyl amino acids $6-8$ were reacted with (ethoxycarbonylmethylene)triphenylphosphorane and the peptide coupling reagent 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDCI) in the presence of a catalytic quantity of DMAP. Standard work-up followed by chromatographic purification afforded the desired ylides $\mathbf{9 - 2 0}$ in moderate yield (Table 1). As expected these were stable crystalline solids which gave satisfactory analytical data and ${ }^{31} \mathrm{P}$ NMR signals in the range $\delta_{\mathrm{P}}+17-18$. The ${ }^{1} \mathrm{H}$ and particularly ${ }^{13} \mathrm{C}$ NMR spectra were rather complex both due to phosphorus coupling and, in the cases of $\mathbf{1 6}, 18$ and 19 , the presence of rotamers due to restricted rotation about the carbamate function. The fully assigned spectra of the starting $N$-protected

Table 1 Preparation and properties of ylides 9-20

|  | Amino acid | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | Yield (\%) | $\mathrm{Mp} /{ }^{\circ} \mathrm{C}$ | $\delta_{\mathrm{P}}$ | $[\alpha]_{\mathrm{D}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | Ala | Bn | Me | 46 | 140-142 | +17.5 | +20.3 |
| 10 | Val | Bn | $\mathrm{Pr}^{\text {i }}$ | 49 | 88-91 | +17.8 | +28.7 |
| 11 | Leu | Bn | $\mathrm{Bu}^{\text {i }}$ | 44 | 152-154 | +17.5 | +21.7 |
| 12 | Gly | Et | H | 51 | 147-149 | +17.8 |  |
| 13 | Ala | Et | Me | 50 | 68-69 | +18.0 | +17.5 |
| 14 | Val | Et | $\mathrm{Pr}^{\text {i }}$ | 45 | 128-129 | +17.8 | +22.6 |
| 15 | Leu | Et | $\mathrm{Bu}^{\text {i }}$ | 45 | 105-107 | +17.9 | +17.1 |
| 16 | Ile | Et | $\mathrm{Bu}^{\text {s }}$ | 48 | 148-149 | +18.7/18.6 | +5.9 |
| 17 | Ala | $\mathrm{Bu}^{\text {i }}$ | Me | 45 | 103-104 | +18.0 | +13.8 |
| 18 | Pro | Bn | - | 49 | 129-130 | +17.6/17.4 | -45.0 |
| 19 | Pro | Et | - | 44 | 112-114 | +17.4/17.2 | -33.8 |
| 20 | $\beta$-Ala | - | - | 52 | 94-95 | +18.1 | - |

amino acids, some of which are reported here for the first time, were of considerable assistance in allowing complete assignment of the ${ }^{13} \mathrm{C}$ NMR data for the new ylides $9-20$ (Table 2). As we have noted previously, the low value ( $\leq 3 \mathrm{~Hz}$ ) for ${ }^{2} J_{\mathrm{P} \text {-keto } \mathrm{C}(=0)}$ bodes well for the successful extrusion of $\mathrm{Ph}_{3} \mathrm{PO}$. As shown in Tables 1 and 2, both the isoleucine derived ylide 16 and the two proline derived ylides $\mathbf{1 8}$ and 19 showed separate ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR signals for the two carbamate rotamers. For ylides $\mathbf{1 6}$ and 19 variable temperature ${ }^{31} \mathrm{P}$ NMR studies gave activation energies $\Delta G^{\ddagger}$ of 74.8 and $70.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, for the rotation processes.


The ylides were now subjected to FVP at $600^{\circ} \mathrm{C}$ and $1-5 \times$ $10^{-2}$ Torr in a conventional flow system and this led to the desired extrusion of $\mathrm{Ph}_{3} \mathrm{PO}$ to give the acetylenic esters 21-29 and 33-35 in moderate yield after chromatographic separation from the $\mathrm{Ph}_{3} \mathrm{PO}$ (Table 3). These gave the expected analytical and spectroscopic data and in the majority of cases separate ${ }^{13} \mathrm{C}$ NMR signals were observed for the two carbamate rotamers (Table 4). For 9 and 10 additional minor products were obtained from the chromatography which proved to be the terminal alkynes $\mathbf{3 0}$ and $\mathbf{3 1}$ resulting from the known ${ }^{3}$ loss of the ethoxycarbonyl group under these conditions. Attempts to increase the proportion of these products by performing the pyrolyses at higher temperatures were frustrated by an increasing degree of decomposition to give intractable products. The rather interesting functionalised 1,3-diene product 32 was also obtained as a minor product from $\mathbf{1 0}$ and its formation is probably explained by two consecutive 1,3-hydrogen shifts in the primary product 22.

As noted in Tables 1 and 3, both the chiral acetylenic esters and their ylide precursors showed substantial optical rotations. However no satisfactory method for direct determination of the ee of these compounds has yet been found. For 16 and its

pyrolysis product 28 where an additional stereogenic centre is present the absence of diastereomer signals in the NMR spectra indicated that no significant degree of racemisation had occurred. An alternative to the method reported here is provided by the work of Reetz and coworkers ${ }^{13}$ who treated suitably protected $\alpha$-amino aldehydes with $\mathrm{CBr}_{4}-\mathrm{Ph}_{3} \mathrm{P}$ followed by BuLi in the so-called Corey-Fuchs procedure and then intercepted the aminoalkynyllithiums with $\mathrm{CO}_{2}$ to give $\alpha, \beta$-acetylenic $\gamma$-amino acids after deprotection.

With the acetylenic products in hand, we were anxious to examine the further reactivity of these potentially versatile synthetic intermediates. Treatment of $\mathbf{2 5}$ with HBr in acetic acid resulted in clean regioselective addition of HBr across the triple bond to give the $\alpha$-bromoacrylate 36 as a $1: 1$ mixture of $E$ and $Z$ isomers. It seems likely that a wide variety of other additions to the triple bond could be carried out and this is currently being examined. In order to obtain GABA analogues, we subjected the Cbz protected compounds 21-23 and $\mathbf{3 3}$ to catalytic hydrogenation. This resulted in removal of the Cbz group and complete hydrogenation of the triple bond to give the chiral $\gamma$-amino esters $\mathbf{3 7 - 4 0}$ in $70-80 \%$ yield. These again showed significant optical rotations and the ee could now be determined by conversion to the corresponding Mosher amides ${ }^{14}$ which gave good separation of ${ }^{19} \mathrm{~F}$ NMR signals in each case leading to values for the ee of $76 \%$ (37), $85 \%$ (38), $>85 \%$ (39)

Table $2{ }^{13} \mathrm{C}$ NMR spectra of ylides $9-\mathbf{2 0}, \delta_{\mathrm{C}}\left(J_{\mathrm{P}-\mathrm{C}}\right)$

|  | CHN | $\mathrm{P}=\mathrm{C}$ | COCN | $\mathrm{CO}_{2} \mathrm{Et}$ | $\underline{\mathrm{NCO}_{2} \mathrm{R}^{1} \text { signals }^{\text {b }}}$ |  | P-Phenyl |  |  |  | $\mathrm{R}^{2}$ signals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | CO | $\mathrm{R}^{1}$ | C-1 | C-2 | C-3 | C-4 |  |
| 9 | 52.5 (8) | 68.8 (111) | 194.8 | 166.7 (14), 58.7, 13.8 | 155.5 | 137.1 (4ry), 128.3, 127.7 (3C), 65.9 | 126.0 (93) | 133.0 (10) | 128.6 (12) | 131.8 (<2) | 20.4 |
| 10 | 60.4 (8) | 69.8 (111) | 194.1 | 166.8 (14), 58.6, 13.8 | 156.6 | 137.1 (4ry), 128.2, 127.6 (3C), 66.0 | 126.0 (94) | 133.0 (10) | 128.5 (12) | 131.8 (<2) | 32.3, 20.7, 15.9 |
| 11 | 55.1 (8) | 69.3 (111) | 195.2 | 166.8 (15), 58.7, 13.9 | 156.6 | 137.1 (4ry), 128.3, 127.7 (3C), 66.1 | 126.2 (94) | 133.1 (10) | 128.5 (12) | 131.8 (2) | 43.6, 25.1, 21.9, 21.8 |
| 12 | 49.2 (8) | 68.9 (112) | 190.6 | 167.4 (15), 58.7, 13.9 | 156.6 | 60.4, 14.7 | 125.9 (94) | 133.2 (10) | 128.6 (13) | 131.9 (2) | - |
| 13 | 52.4 (8) | 68.8 (111) | 195.1 | 166.8 (15), 58.7, 13.8 | 155.9 | 60.2, 14.7 | 126.2 (94) | 133.1 (10) | 128.6 (13) | 131.8 (2) | 20.5 |
| 14 | 60.3 (8) | 70.0(110) | 194.4 | 166.9 (15), 58.8, 13.9 | 157.0 | 60.4, 14.6 | 126.1 (94) | 133.2 (10) | 128.5 (13) | 131.8 (2) | 32.3, 20.7, 15.9 |
| 15 | 54.9 (8) | 69.2 (110) | 195.4 | 166.8 (15), 58.7, 13.9 | 156.6 | 60.3, 14.6 | 126.3 (94) | 133.1 (10) | 128.5 (13) | 131.7 (2) | 43.7, 25.1, 24.0, 21.8 |
| $16^{a}$ | 60.5 (8) | 70.3 (110) | 194.5 | 166.8 (14), 58.7, 13.8 | 156.9 | 60.3, 14.6 | 126.2 (93) | 133.1 (10) | 128.5 (12) | 131.6 (<2) | 39.4, 27.8, 16.8, 12.1 |
|  | 57.2 (8) | 69.8 (110) |  | 166.7 (14) |  |  | 126.15 (93) |  |  |  | 38.8, 22.8 12.9 |
| 17 | 51.9 (8) | 68.4 (110) | 194.5 | 166.4 (14), 58.2, 13.3 | 155.5 | 69.9, 27.5, 18.6 (2C) | 125.5 (93) | 132.5 (10) | 128.1 (13) | 131.5 (<2) | 20.6 |
| $18^{a}$ | 62.9 (8) | 69.2 (111) | 195.6(3) | 167.51 (15), 58.4, 13.7 | 154.54 | 137.4 (4ry), 128.2, 127.6 (3C), 66.3 | 126.4 (93) | 133.3 (10) | 128.8 (13) | 131.6 (4) | 46.9, 30.7, 23.8 |
|  | 62.4 (8) | 68.9 (111) | 195.1(3) | 167.46 (15), 58.3 | 154.51 | 66.0 | 126.2 (94) | 132.9 (10) |  | 131.5 (4) | 47.4, 31.8, 23.0 |
| $19^{a}$ | 62.7 (8) | 69.3 (110) | 195.5 | 167.54 (15), 58.4, 13.8 | 155.0 | 60.6, 14.8 | 126.7 (94) | 133.4 (10) | 128.5 (13) | 131.6 (2) | 47.2, 31.7, 22.9 |
|  | 62.4 (8) | 68.9 (111) | 195.4 | 167.49 (15), 58.3, 13.7 | 154.9 | 60.5 |  | 133.1 (10) | 128.4 (13) | 131.5 (<2) | 46.9, 30.7, 23.8 |
| 20 | - | 71.4 (111) | 196.0 | 167.9 (15), 58.5, 13.7 | 156.6 | 60.2, 14.8 | 126.5 (94) | 133.0 (10) | 128.6 (12) | 131.7 (2) | 40.0 (6), 37.4 |

${ }^{a}$ For 16, 18 and $\mathbf{1 9}$ the signals for both carbamate rotamers are given where they differ. ${ }^{b} 4$ ry refers to quaternary carbon atoms.


 300 MHz , for ${ }^{13} \mathrm{C}$ at 75 MHz , for ${ }^{31} \mathrm{P}$ at 121 MHz and for ${ }^{19} \mathrm{~F}$ at Elmer 1420 instrument. NMR spectra were obtained for ${ }^{1} \mathrm{H}$ at scope and are uncorrected. Infra red spectra were recorded as
Nujol mulls for solids and as thin films for liquids on a Perkin Melting points were recorded on a Reichert hot-stage micro
 applications to the preparation of more highly functionalise
chiral products will be reported shortly. analogues, ${ }^{16}$ the present route has much to offer and further

 dione), reduction and thermolysis was described. ${ }^{15}$ Although
this may be preferable to the route described here for acces ation with Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6 was in progress a valuable alternative route from $\alpha$-amino acid not involve a major degree of racemisation. While this work and $>95 \%$ (40). Thus it seems likely that the FVP process does

|  | ¢ |
| :---: | :---: |
|  |  |
| \| $\underset{\sim}{\text { ® O }}$ | 刃 |
|  | $\pi_{N}$ |
|  | $\frac{\text { S }}{\substack{2}}$ |
|  | $\stackrel{8}{8}$ |

Table $4{ }^{13} \mathrm{C}$ NMR spectra of alkyne products $21-\mathbf{3 1}$ and 33-35, $\delta_{\mathrm{C}}\left(J_{\mathrm{P}-\mathrm{C}}\right)$. The signals for both carbamate rotamers are given where they differ

|  | $-C \equiv \mathrm{O}$ | $\mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}$ | CHN | $\mathrm{R}^{2}$ | $\mathrm{NCO} \mathrm{O}_{2} \mathrm{R}^{1}$ | $\mathrm{R}^{1}$ signals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 74.4, 86.8 | 14.0, 62.2, 155.0 | 38.8 | 21.6 | 153.2 | 67.2, 128.2 (2C), 128.3, 128.6 (2C), 136.0 (4ry) |
| 30 | 70.6, 84.1 | - | 38.9 | 22.5 | 155.2 | 67.0, 128.1 (2C), 128.2, 128.5 (2C), 136.2 (4ry) |
| 22 | 76.0, 85.2 | 14.0, 62.1, 155.5 | 49.2 | 17.9, 18.6, 33.0 | 153.3 | 67.3, 128.2 (2C), 128.3, 128.6 (2C), 136.1 (4ry) |
|  | 75.8, 81.6 |  |  |  |  |  |
| 31 | 72.1, 81.6 | - | 49.1 | 17.5, 18.6, 32.8 | 155.5 | 67.0, 125.5, 128.2 (2C), 128.5 (2C), 136.2 (4ry) |
| 23 | 75.0, 86.5 | 14.0, 62.1, 155.3 | 41.8 | $22.1,22.4,24.9,44.3$ | 153.3 | 67.2, 128.2 (2C), 128.3, 128.6 (2C), 136.1 (4ry) |
|  | 71.2, 83.4 |  |  |  |  |  |
| 24 | 75.1, 83.5 | 14.0, 62.2, 156.0 | 30.7 | - | 153.2 | 14.6, 61.5 |
|  | 75.0, 83.3 |  | 29.8 |  |  |  |
| 25 | 74.2, 87.1 | 14.0, 62.1, 155.3 | 38.6 | 21.6 | 153.3 | 14.5, 61.4 |
| 26 | 75.9, 85.6 | 14.0, 62.1, 156.0 | 49.7 | 18.0, 18.6, 33.2 | 153.4 | 14.5, 60.1 |
|  | 75.2, 86.9 | 14.0, 62.0, 156.6 | 47.7 | 17.8, 18.8, 33.3 | 153.6 | 14.5, 61.4 |
| 27 | 74.8, 86.9 | 14.0, $62.1,155.7$ | 40.2 | 22.1, 22.3, 24.8, 44.3 | 153.4 | 14.5, 61.9 |
|  | 74.4, 88.2 |  | 41.6 | 22.1, 22.5, 24.9, 44.6 | 153.6 | 61.4 |
| 28 | 75.6, 86.1 | 14.0,$62.1, ~ 155.9$$62.0,155.7$ | 47.6 | 11.5, 15.1, 25.2, 39.4 | 153.4 | $\begin{aligned} & 14.5,61.9 \\ & 62.0 \end{aligned}$ |
|  | 76.0, 85.3 |  | 47.8 | 11.4, 14.7, 25.8, 39.6 | 153.3 |  |
| 29 | 74.3, 87.1 | 14.0, 62.1, 155.5 | 38.7 | 21.6 | 153.3 | 19.0 (2C), 28.0, 71.6 |
| 33 | 74.3, 87.0 | 14.0, 62.0, 154.4 | 48.4 | 24.6, 33.2, 46.3 | 153.4 | 67.0, 127.9, 128.0, 128.4 (2C), 136.5(4ry) |
|  | 70.3, 86.8 |  | 47.9 | 23.8, 33.2, 45.9 | 154.1 |  |
| 34 | 74.1, 81.1 | 14.0, 62.0, $\begin{array}{r}154.7 \\ 154.5\end{array}$ | 47.7 | 23.8, 33.2, 46.1 | 153.5 | 14.7, 61.5 |
|  | 70.1 |  | 48.2 | 24.6, 32.4, 45.8 |  |  |
| 35 | 74.3, 86.1 | 14.0, 62.0, 156.5 | 38.9 | 20.3 | 153.5 | 14.6, 61.1 |
|  | 74.2, 87.1 |  |  |  |  |  |

MS-902 spectrometer using electron impact at 70 eV or on a VG Autospec using chemical ionisation with isobutane as the ionising gas. Optical rotations were measured on an Optical Activity AA1000 polarimeter and are given in units of $10^{-1} \mathrm{deg}$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was prepared by storage over $\mathrm{P}_{2} \mathrm{O}_{5}$.

## Preparation of $N$-protected amino acids

To a stirred solution of the appropriate amino acid ( 10.0 g ) in 2 M NaOH ( 1.0 equiv.) at $0{ }^{\circ} \mathrm{C}$ were added simultaneously benzyl or ethyl chloroformate ( 1.0 equiv.) and 2 M NaOH (1.0 equiv.) dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h then washed with ether $\left(20 \mathrm{~cm}^{3}\right)$. The aqueous phase was acidified with 2 M HCl and extracted with ethyl acetate $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried and the solvent evaporated to furnish the product. Properties of the products are summarised in Table 5.

## Preparation of $\boldsymbol{\beta}$-aminoacyl phosphorus ylides

To a stirred solution of (ethoxycarbonylmethylene)triphenylphosphorane $(1.82 \mathrm{~g}, 5.2 \mathrm{mmol})$ and the appropriate $N$ protected amino acid $(5.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added EDCI $(1.0 \mathrm{~g}, 5.2 \mathrm{mmol})$ and DMAP ( 0.03 g , $0.26 \mathrm{mmol})$. The mixture was stirred at this temperature for 30 min then allowed to warm up to RT. Once all the starting material was consumed (indicated by TLC) the mixture was poured into brine, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and the combined organic extracts dried and evaporated. The crude product was purified by chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetatehexane, $1: 2$ ) followed by recrystallisation from ethyl acetate.

Ethyl (4S)-4-benzoxycarbonylamino-3-oxo-2-triphenylphosphoranylidenepentanoate 9 . From $N$-benzoxycarbonyl-( $S$ )alanine as colourless crystals $(1.21 \mathrm{~g}, 46 \%)$, mp $140-142{ }^{\circ} \mathrm{C}$ (Found: C, 71.9; H, 5.7; N, 2.5. $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$ requires C , 71.6; $\mathrm{H}, 5.7 ; \mathrm{N}, 2.5 \%) ;[a]_{\mathrm{D}}^{20}+20.3\left(c 1.005\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ $3450,1700,1645,1560,1475,1270,1220,1090,1080,1040,750$ and $690 ; \delta_{\mathrm{H}} 7.78-7.61(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.55-7.41(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.41-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.88(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{NH}), 5.51(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.54(3 \mathrm{H}, \mathrm{d}$, $\left.J 6, \mathrm{CHCH}_{3}\right)$ and $0.74(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table $2 ; \delta_{\mathrm{P}}+17.5$; $m / z(\mathrm{CI}) 554\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 508$ (20), 446 (18), 375 (31), 279 (11), 263 (17), 184 (8) and 91 (10).

The racemic compound was prepared using $N$-benzoxy-carbonyl- $( \pm)$-alanine and had $\mathrm{mp} 142-143{ }^{\circ} \mathrm{C}$.

Ethyl (4S)-4-benzoxycarbonylamino-5-methyl-3-oxo-2-triphenylphosphoranylidenehexanoate 10 . From $N$-benzoxycarb-onyl-( $S$ )-valine as colourless crystals $(1.48 \mathrm{~g}, 49 \%), \mathrm{mp}$ $88-91{ }^{\circ} \mathrm{C}$ (Found: C, $72.4 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.35 . \mathrm{C}_{35} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{P}$ requires C, $72.3 ; \mathrm{H}, 6.2 ; \mathrm{N}, 2.4 \%) ;[\alpha]_{\mathrm{D}}^{20}+28.7$ (c 0.995 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\max } / \mathrm{cm}^{-1} 3390,1710,1640,1550,1275,1220,1090,1065,1000$, 740,710 and $680 ; \delta_{\mathrm{H}} 7.80-7.63(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.51-7.40(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.39-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.68(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{NH}), 5.54$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}), 5.06(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{Ph}), 3.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$, $2.44(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}), 1.09(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}), 0.72(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.68(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.8$; $\mathrm{m} / \mathrm{z}(\mathrm{FAB}) 582\left(\mathrm{M}+\mathrm{H}^{+}, 16 \%\right), 492$ (5), 375 (100), 303 (39), 262 (14) and 183 (14).

Ethyl (4S)-4-benzoxycarbonylamino-6-methyl-3-oxo-2-triphenylphosphoranylideneheptanoate 11 . From $N$-benzoxycarb-onyl- $(S)$-leucine as colourless crystals $(1.36 \mathrm{~g}, 44 \%)$, mp $152-154{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 72.8 ; \mathrm{H}, 6.5 ; \mathrm{N}, 2.3 . \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.4 \%) ;[\alpha]_{\mathrm{D}}^{20}+21.7$ (c) 0.975 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3390,3300,1695,1655,1535,1500,1290$, $1250,1094,1080,1045,730$ and $680 ; \delta_{\mathrm{H}} 7.67-7.61(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.64-7.44 (10 H, m, Ph), 7.30-7.26 (5 H, m, Ph), $5.61(2 \mathrm{H}, \mathrm{m}$, NH and CH$), 5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.77$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.12(3 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{CHMe}), 0.94(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe})$ and $0.72(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.5 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 596\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $100 \%$ ), 550 (44), 506 (6), 488 (19), 416 (30), 375 (23), 319 (7), 292 (12), 279 (17), 263 (41), 225 (36), 187 (11), 156 (12) and 91 (19).

Ethyl 4-ethoxycarbonylamino-3-oxo-2-triphenylphosphoranylidenebutyrate 12. From $N$-ethoxycarbonylglycine as colourless crystals $(1.27 \mathrm{~g}, 51 \%), \mathrm{mp} 147-149^{\circ} \mathrm{C}$ (Found: C, 68.2; H, 6.0; $\mathrm{N}, 2.8 . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 67.9 ; \mathrm{H}, 5.9 ; \mathrm{N}, 2.9 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 3400,1700,1650,1570,1510,1300,1235,1170,1105$, 1090,770 and $690 ; \delta_{\mathrm{H}} 7.70-7.61(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.60-7.50(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.49-7.43(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.68(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}), 4.56(2 \mathrm{H}$, d, J 3, $\mathrm{CH}_{2}$ ), $4.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.17$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$ and $0.76(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table $2 ; \delta_{\mathrm{P}}$ +17.8; m/z (CI) $478\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 432$ (52), 386 (8), 375 (19), 365 (11), 319 (6), 279 (26), 263 (29), 218 (14), 187 (9), 172 (20) and 47 (8).

Ethyl (4S)-4-ethoxycarbonylamino-3-oxo-2-triphenylphosphoranylidenepentanoate 13. From $N$-ethoxycarbonyl-( $S$ )alanine as colourless crystals $(1.09 \mathrm{~g}, 50 \%), \mathrm{mp} 68-69{ }^{\circ} \mathrm{C}$

Table 5 Properties of $N$-protected amino acids 6-8 The signals for both carbamate rotamers are given where they differ

|  | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | Yield (\%) | $\mathrm{Mp} /{ }^{\circ} \mathrm{C}$ | Lit. mp/ ${ }^{\circ} \mathrm{C}$ | Ref. | $\delta_{\text {H }}$ |  |  |  |  | $\delta_{\text {H }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | OH | NH | CHN | $\mathrm{R}^{1}$ signals | $\mathrm{R}^{2}$ signals | $\mathrm{CO}_{2} \mathrm{H}$ | NCO | CHN | $\mathrm{R}^{1}$ signals | $\mathrm{R}^{2}$ signals |
| 6 | Bn | Me | 68 | 82-84 | 83-84 | 17 | 10.84 | $\begin{aligned} & 5.58 \\ & 6.69 \end{aligned}$ | 4.41 | 7.38, 5.17 | 0.74 | 177.5 | 155.9 | 49.4 | 136.0, 128.5, 128.2, 128.0, 67.1 | 18.2 |
| $6^{a}$ | Bn | Me | 68 | 114-115 | 114-115 | 18 |  |  |  |  |  |  |  |  |  |  |
| 6 | Bn | $\mathrm{Pr}^{\text {i }}$ | 58 | 60-62 | 66-67 | 19 | 10.90 | $\begin{aligned} & 5.60 \\ & 6.64 \end{aligned}$ | $\begin{aligned} & 4.43 \\ & 4.22 \end{aligned}$ | 7.41, 5.18 | 2.18, 1.12, 0.98 | 176.4 | 156.5 | 58.8 | 136.0, 128.4, 128.2, 128.1, 67.2 | 31.0, 19.0, 17.3 |
| 6 | Bn | $B u^{i}$ | 61 | (Oil) | (Oil) | 19 | 10.15 | $\begin{aligned} & .0+ \\ & 5.28 \\ & 6.33 \end{aligned}$ | $\begin{aligned} & 4.43 \\ & 4.25 \end{aligned}$ | 7.34, 5.11 | 1.61, 0.94, 0.93 | 178.0 | 156.2 | 52.3 | 136.0, 128.5, 128.2, 128.1, 67.1 | 41.4, 24.7, 22.8, 21.7 |
| 6 | Et | H | 70 | (Oil) | 67-69 | 20 | 9.66 | $\begin{aligned} & 5.50 \\ & 6.85 \end{aligned}$ | 4.33 | $\begin{aligned} & 4.15,1.25 \\ & 4.00 \end{aligned}$ | - | $\begin{aligned} & 174.4 \\ & 173.7 \end{aligned}$ | 157.2 | $\begin{aligned} & 42.6 \\ & 43.2 \end{aligned}$ | $\begin{aligned} & 61.8,14.6 \\ & 62.4 \end{aligned}$ | - |
| 6 | Et | Me | 71 | (Oil) | (Oil) | 21 | 10.26 | $5.58$ | 4.33 | 4.07, 1.19 | 1.40 | 177.2 | 156.5 | 49.4 | 61.4, 14.5 | 18.4 |
| $6^{a}$ | Et | Me | 71 | 80-82 | 84 | 22 |  |  |  |  |  |  |  |  |  |  |
| 6 | Et | $\mathrm{Pr}^{\text {i }}$ | 70 | (Oil) | 37 | 23 | 10.80 | $\begin{aligned} & 5.52 \\ & 6.54 \end{aligned}$ | 4.33 | 4.16, 1.25 | 2.23, 1.00, 0.94 | 176.3 | 157.0 | 58.8 | 61.5, 14.5 | 31.1, 19.0, 17.4 |
| 6 | Et | $\mathrm{Bu}^{\text {i }}$ | 69 | (Oil) | (Oil) | 24 | 11.11 | $\begin{aligned} & 5.31 \\ & 6.38 \end{aligned}$ | 4.37 | 4.13, 1.25 | 1.64, 0.96 | 178.0 | 156.6 | 52.3 | 61.4, 14.5 | 41.4, 24.7, 22.9, 21.7 |
| 6 | Et | $\mathrm{Bu}^{\text {s }}$ | 72 | (Oil) | - | - | 9.47 | $\begin{aligned} & 5.32 \\ & 6.36 \end{aligned}$ | 4.36 | 4.13, 1.26 | 1.95, 1.49, 0.98, 0.93 | 176.7 | 156.6 | 58.2 | 61.4, 14.5 | 37.8, 24.8, 15.5, 11.6 |
| 6 | $\mathrm{Bu}^{\text {i }}$ | Me | 69 | 83-85 | - | - | 10.15 | $\begin{aligned} & 5.45 \\ & 7.01 \end{aligned}$ | 4.25 | $3.91,1.94{ }^{\text {b }}$ | 1.48 | $\begin{aligned} & 177.3 \\ & 177.9 \end{aligned}$ | $\begin{aligned} & 156.9 \\ & 157.9 \end{aligned}$ | $\begin{aligned} & 50.5 \\ & 49.9 \end{aligned}$ | $\begin{aligned} & 72.6,28.2,19.4 \\ & 72.0 \end{aligned}$ | 18.9 |
| 7 | Bn | - | 77 | 60-61 | 77 | 19 | 10.01 | - | 4.35 | $\begin{aligned} & 7.31,5.09 \\ & 7.26 \end{aligned}$ | 3.46, 2.05 | $\begin{aligned} & 176.7 \\ & 176.3 \end{aligned}$ | $\begin{aligned} & 155.4 \\ & 154.7 \end{aligned}$ | $\begin{aligned} & 59.1 \\ & 58.7 \end{aligned}$ | $\begin{aligned} & 67.3,136.3,128.4,127.9,127.8 \\ & 67.2 \end{aligned}$ | $\begin{aligned} & 46.6,30.7,24.1 \\ & 128.3,127.5 \end{aligned}$ |
| 7 | Et | - | 77 | 59-60 | 57-58 | 25 | 10.68 | - | 4.24 | 4.07, 1.13 | 3.39, 2.11, 1.80 | $\begin{aligned} & 177.0 \\ & 176.4 \end{aligned}$ | $\begin{aligned} & 155.9 \\ & 155.1 \end{aligned}$ | $\begin{aligned} & 59.1 \\ & 58.7 \end{aligned}$ | $\begin{aligned} & 61.8,14.7 \\ & 61.7,14.6 \end{aligned}$ | $\begin{aligned} & 46.8,30.9,24.3 \\ & 46.5,29.7,23.5 \end{aligned}$ |
| 8 | - | - | 62 | 57-59 | 57-59 | 26 | 10.88 | $\begin{aligned} & 6.42 \\ & 7.17 \end{aligned}$ | 3.46 | 4.14, 1.28 | - ${ }^{\text {c }}$ | 177.4 177.2 | 157.4 | 38.7 | $61.7,14.6$ $61.5,14.9$ | 46.5, 29.7, 23.5 |

(Found: C, 68.4; $\mathrm{H}, 5.8 ; \mathrm{N}, 2.8 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{P}$ requires C, 68.4; $\mathrm{H}, 6.2 ; \mathrm{N}, 2.9 \%$ ); $[a]_{\mathrm{D}}^{20}+17.5$ (c 0.98 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3400,1710,1650,1570,1340,1280,1230,1100,1070$ and 690 ; $\delta_{\mathrm{H}} 7.81-7.62(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.60-7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.53-7.42$ ( $6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ ), $5.66(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9, \mathrm{NH}), 5.48(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHN})$, $4.06\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.45(3 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{CHMe}), 1.16\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.75(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+18.0 ; \mathrm{m} / \mathrm{z}$ (CI) $492\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $100 \%$ ), 446 (76), 375 (54), 303 (8), 279 (9), 263 (34), 232 (8), 186 (21), 116 (8) and 47 (11).

The racemic compound was prepared using $N$-ethoxy-carbonyl-( $\pm$ )-alanine and had $\mathrm{mp} 80-82^{\circ} \mathrm{C}$.

Ethyl (4S)-4-ethoxycarbonylamino-5-methyl-3-oxo-2-triphenylphosphoranylidenehexanoate 14. From $N$-ethoxycarbonyl-( $(S)$ valine as colourless crystals ( $1.23 \mathrm{~g}, 45 \%$ ), $\mathrm{mp} 128-129{ }^{\circ} \mathrm{C}$ (Found: C, 69.3; H, 6.5; N, 2.6. $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{P}$ requires C, 69.4; $\mathrm{H}, 6.6 ; \mathrm{N}, 2.7 \%)$; $[a]_{\mathrm{D}}^{20}+22.6\left(c 0.975\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3385,1730,1660,1575,1380,1290,1220,1100,1070$ and 690 ; $\delta_{\mathrm{H}} 7.74-7.61(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.59-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.49-7.42$ ( $6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ ), $5.69(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{NH}), 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C} H \mathrm{NH})$, $\left.4.06\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.79(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH})_{2}\right), 2.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C} H \mathrm{Me}_{2}$ ), 1.18 ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}$ ), 1.06 ( $3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e$ ), $0.75\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.62(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.8 ; m / z(\mathrm{CI}) 520\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 474(31), 375$ (34) and 263 (31).

Ethyl (4S)-4-ethoxycarbonylamino-6-methyl-3-oxo-2-triphenylphosphoranylideneheptanoate 15. From $N$-ethoxycarbonyl-$(S)$-leucine as colourless crystals ( $1.23 \mathrm{~g}, 45 \%$ ), mp $105-107^{\circ} \mathrm{C}$ (Found: C, 69.6; H, 7.0; N, 2.5. $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 69.8$; $\mathrm{H}, 6.8 ; \mathrm{N}, 2.6 \%)$; $[a]_{\mathrm{D}}^{20}+17.1$ (c 0.935 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3360, 3260, 1720, 1670, 1580, 1260, 1100, 1050 and 690; $\delta_{\mathrm{H}} 7.75-7.61(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.56-7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.48-7.42$ ( $6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ ), $5.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.41(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}), 4.04$ $\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.78(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 1.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 1.17\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.11$ ( $3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{CH} M e$ ), $0.93(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e)$ and $0.73(3 \mathrm{H}, \mathrm{t}$, $\left.J 7, \mathrm{CH}_{2} M e\right)$; $\delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.9 ; m / z(\mathrm{CI}) 534\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $100 \%$ ), 488 (93), 431 (14), 412 (7), 375 (30), 319 (5), 274 (20), 263 (39), 228 (28), 185 (8), 158 (8) and 47 (9).

Ethyl (4S,5S)-4-ethoxycarbonylamino-5-methyl-3-oxo-2-triphenylphosphoranylideneheptanoate 16. From $N$-ethoxycarb-onyl-( $S, S$ )-isoleucine as colourless crystals ( $1.34 \mathrm{~g}, 48 \%$ ), mp 148-149 ${ }^{\circ} \mathrm{C}$ (Found: C, 69.4; H, 6.8; N, 2.5. $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 69.8 ; \mathrm{H}, 6.8 ; \mathrm{N}, 2.6 \%) ;[a]_{\mathrm{D}}^{20}+5.9\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\max } / \mathrm{cm}^{-1} 3390,1695,1650,1580,1470,1440,1340,1298,1280$, $1220,1098,1065,750$ and $690 ; \delta_{\mathrm{H}} 7.78-7.61(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.59-$ $7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.47-7.31(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.55(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $5.46(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 4.03\left(3 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.78(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 1.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.17\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.10-$ $0.91\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 0.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 0.74(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right)$ and $0.58(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e)$; $\delta_{\mathrm{C}}$ see Table 2 ; $\delta_{\mathrm{P}}$ $+18.7,18.6^{*} ; m / z(\mathrm{CI}) 534\left(\mathrm{M}+\mathrm{H}^{+}, 75 \%\right), 458$ (9), 412 (6), 375 (11), 326 (17), 312 (11), 294 (5), 281 (22), 266 (23), 215 (48) and 236 (100).

Ethyl (4S)-4-isobutoxycarbonylamino-3-oxo-2-triphenylphosphoranylidenepentanoate 17. From $N$-isobutyloxycarbonyl-( $S$ )alanine as colourless crystals $(1.2 \mathrm{~g}, 45 \%), \mathrm{mp} 103-104{ }^{\circ} \mathrm{C}$ (Found: C, 69.1; H, 6.5; N, 2.7. $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{P}$ requires C, 69.4; $\mathrm{H}, 6.6 ; \mathrm{N}, 2.7 \%) ;[a]_{\mathrm{D}}^{20}+13.8\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1} 3490$, $1710,1650,1545,1320,1255,1230,1120,1105,1100,1090$, 1050,750 and $690 ; \delta_{\mathrm{H}} 7.81-7.62(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.57-7.52(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.49-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.76(1 \mathrm{H}, \mathrm{br}$ d, $J 7, \mathrm{NH}), 5.46$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ ), $3.77\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.83(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.46$ ( $3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}), 0.85\left(6 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe} e_{2}\right)$ and $0.75(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+18.0 ; m / z(\mathrm{CI}) 520\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $100 \%$ ), 474 (10), 444 (13), 375 (12), 263 (19) and 187 (15).
( $N$-Benzoxycarbonyl-( $S$ )-prolinoyl(ethoxycarbonyl)methylene)triphenylphosphorane 18. From $N$-benzoxycarbonyl-( $(S)$ proline as colourless crystals ( $1.40 \mathrm{~g}, 49 \%$ ), mp $129-130{ }^{\circ} \mathrm{C}$ (Found: C, $72.5 ; \mathrm{H}, 6.15 ; \mathrm{N}, 2.3 . \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 72.5$; $\mathrm{H}, 5.9 ; \mathrm{N}, 2.4 \%) ;[a]_{\mathrm{D}}^{20}-45.0\left(c 1.03\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3350$, $1675,1650,1580,1440,1295,1100,760$ and $690 ; \delta_{\mathrm{H}} 7.88-7.14$ $(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.71$ and $5.64^{*}(1 \mathrm{H}, \mathrm{dd}, J 9,3, \mathrm{CH}), 5.08(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.40$ and $2.04\left(2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2}\right), 1.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $0.66(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.6$ and 17.4*; $m / z 567\left(\mathrm{M}^{+}\right.$, $0.7 \%$ ), 553 (2.8), 525 (8), 465 (2.3), 375 (27), 279 (20), 181 (23), 149 (25), 105 (29) and 91 (100).
( $N$-Ethoxycarbonyl-( $(S)$-prolinoyl(ethoxycarbonyl)methylene)triphenylphosphorane 19. From $N$-ethoxycarbonyl-( $S$ )-proline as colourless crystals ( $1.19 \mathrm{~g}, 44 \%$ ), mp 112-114 ${ }^{\circ} \mathrm{C}$ (Found: C, 69.8; H, 6.5; N, 2.4. $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 69.6 ; \mathrm{H}, 6.2 ; \mathrm{N}$, 2.7\%); $[a]_{\mathrm{D}}^{20}-33.8$ (c 0.96 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 1650,1560$, $1440,1290,1095,1080,750$ and $690 ; \delta_{\mathrm{H}} 7.68-7.55(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.55-7.38(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.52$ and $5.61(1 \mathrm{H}, \mathrm{ddd}, J 13,9,2, \mathrm{CH})$, $4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.36 and $2.04\left(2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2}\right), 1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.18(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Me})$ and $0.68(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.4$ and $17.2^{*} ; m / z(\mathrm{CI}) 518\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 472$ (95), 449 (9), 400 (42), 375 (71), 319 (9), 290 (58), 279 (73), 244 (14), 212 (49), 187 (32), 142 (52) and 47 (16).

Ethyl 5-ethoxycarbonylamino-3-oxo-2-triphenylphosphoranylidenepentanoate 20. From $N$-ethoxycarbonyl $\beta$-alanine as colourless crystals ( $1.34 \mathrm{~g}, 52^{\%}$ ), mp $94-95^{\circ} \mathrm{C}$ (Found: C, 68.1 ; $\mathrm{H}, 6.1 ; \mathrm{N}, 2.8 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{P}$ requires C, 68.4; H, 6.2; $\mathrm{N}, 2.9 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 3230,1700,1650,1535,1320,1255,1230,1120,1105$, $1100,1080,1030,750$ and $690 ; \delta_{\mathrm{H}} 7.80-7.42(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.31$ $(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}), 4.08\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.72(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2}\right), 3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.12\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2}\right), 1.25(3 \mathrm{H}$, $\mathrm{t}, J 7, \mathrm{Me})$ and $0.69(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+18.1$; $m / z(\mathrm{CI}) 492\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 446(12), 391$ (29), 279 (39) and 263 (5).

## Flash vacuum pyrolysis of ylides

The apparatus used was as described previously. ${ }^{27}$ All pyrolyses were conducted at $600{ }^{\circ} \mathrm{C}$ and at pressures in the range $1-5 \times$ $10^{-2}$ Torr. Under these conditions the contact time in the hot zone was estimated to be $\sim 10 \mathrm{~ms}$. In each case a mixture of solid and oil collected at the furnace exit which was shown by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR to be a mixture of $\mathrm{Ph}_{3} \mathrm{PO}$ and the desired product. Chromatography on silica (diethyl ether-hexane, $1: 2$ ) gave the pure products as follows.

Ethyl (4S)-4-(benzoxycarbonylamino)pent-2-ynoate 21. FVP of the ylide $9(500 \mathrm{mg})$ gave the title compound ( $72 \mathrm{mg}, 29 \%$ ) as a yellow oil (Found: C, 65.7; H, 6.6; N, 5.4; M + H ${ }^{+}$, 276.1226. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{C}, 65.4 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5.1 \% ; M+H$, 276.1236); $[a]_{\mathrm{D}}^{23}-30.3\left(c 0.615\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3318,2983$, $2245,1709,1526,1254,1064,770$ and $708 ; \delta_{\mathrm{H}} 7.38(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$, $5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.99(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{NH}), 4.70(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 4.22\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 1.47(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} \mathrm{Me})$ and 1.30 ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}$ ); $\delta_{\mathrm{C}}$ see Table 4; $m / z(\mathrm{CI}) 276\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $26 \%$ ), 232 (100), 147 (8) and 91 (9).
An additional minor product obtained from the chromatography was compound $\mathbf{3 0}$.
(3S)-3-(Benzoxycarbonylamino)but-1-yne 30. Compound 30 as a yellow oil ( $28 \mathrm{mg}, 15 \%$ ) (Found: $\mathrm{M}^{+}, 203.0954 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $M^{+}$, 203.0946); $[a]_{\mathrm{D}}^{22}-3.43\left(c 0.84\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\max } /$ $\mathrm{cm}^{-1} 3405,2926,2253,1708,1525,1224,1049,752$ and 698 ; $\delta_{\mathrm{H}} 7.40(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.06(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, NH), $4.72(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 2.62(1 \mathrm{H}, \mathrm{d}, J 2,-\mathrm{CH})$ and 1.48 ( $3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e$ ); $\delta_{\mathrm{C}}$ see Table 4; $m / z(\mathrm{EI}) 203\left(\mathrm{M}^{+}, 8 \%\right), 149$ (9), 112 (5), 108 (80), 91 (100), 79 (16) and 65 (14).

Ethyl (4S)-4-benzoxycarbonylamino-5-methylhex-2-ynoate 22. FVP of the ylide $\mathbf{1 0}(300 \mathrm{mg})$ gave the title compound ( $91 \mathrm{mg}, 58 \%$ ) as colourless crystals, $\mathrm{mp} 60-62^{\circ} \mathrm{C}$ (Found: M + $\mathrm{H}^{+}$, 304.1551. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $\left.M+H, 304.1549\right)$; $[a]_{\mathrm{D}}^{23}$ -34.4 (c 0.545 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3330$, 2970, 2240, 1715, $1535,1302,1260,1050,750$ and $690 ; \delta_{\mathrm{H}} 7.38(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.14$ ( $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}$ ), $5.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{NH}), 4.55(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH})$, $4.24\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 1.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 1.33(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{Me})$ and $1.03\left(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{2}\right) ; \delta_{\mathrm{C}}$ see Table 4; $m / z(\mathrm{CI})$ $304\left(\mathrm{M}+\mathrm{H}^{+}, 51 \%\right), 260(92), 232(100), 188$ (14) and 171 (16).

Additional minor products obtained from the chromatography were as follows.
(3S)-3-Benzoxycarbonylamino-4-methylpent-1-yne 31. Compound 31 was isolated as a colourless oil ( $13 \mathrm{mg}, 10 \%$ ) (Found: $\mathrm{M}^{+}$, 231.1253. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M$, 231.1259); [ $\left.\alpha\right]_{\mathrm{D}}^{22}-2.7$ (c 0.25 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3307,2963,2243,1708,1526$, $1467,1238,1028,754$ and $697 ; \delta_{\mathrm{H}} 7.37(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.11(2 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2}$ ), $4.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.37(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 2.28(1 \mathrm{H}$, $\mathrm{d}, J 2,-\mathrm{CH}), 1.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right)$ and $0.98(6 \mathrm{H}, \mathrm{d}, J 8$, $\mathrm{CHMe})_{2}$ ); $\delta_{\mathrm{C}}$ see Table 4; $m / z$ (EI) 231 ( ${ }^{+}, 3 \%$ ), 188 (8), 144 (11), 108 (13), 91 (100) and 65 (6).
( $E$ )-Ethyl 4-benzoxycarbonylamino-5-methylhexa-2,4-dienoate 32. Compound 32 was isolated as a yellow oil ( $18 \mathrm{mg}, 11 \%$ ) (Found: $\mathrm{M}^{+}-\mathrm{PhCH}_{2}, 212.0931 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $M-$ $\mathrm{PhCH}_{2}, 212.0923$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3322,2981,1728,1625,1371$, $1279,1176,1029,747$ and $699 ; \delta_{\mathrm{H}} 7.80(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{HC}=), 7.38$ ( $5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$ ), 5.88 ( $1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{HC}=$ ), 5.68 ( 1 H , br s, NH), 5.16 ( $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$ ), $4.20\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Me}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.86(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{C}} 167.3$ $\left(\mathrm{CO}_{2}\right), 154.3$ ( NHCO ), 144.3 ( $\mathrm{NHC=}$ ), $138.8(=\mathrm{CH}), 136.2$ ( Ph C-1), 128.6 (2 C), 128.2 (2 C), 127.6 ( $\mathrm{Ph} \mathrm{C}-4$ ), 125.9 ( $=C \mathrm{CMe}_{2}$ ), $116.7(=\mathrm{CH}), 67.2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 60.4\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 21.5(\mathrm{CHMe})$, $20.3(\mathrm{CH} M e)$ and $14.3(\mathrm{Me}) ; m / z(\mathrm{EI}) 212\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2}, 42 \%\right)$, 127 (10), 109 (16) and 91 (100).

Ethyl (4S)-4-benzoxycarbonylamino-6-methylhept-2-ynoate 23. FVP of the ylide $\mathbf{1 1}(360 \mathrm{mg})$ gave the title compound $\left(68 \mathrm{mg}, 30 \%\right.$ ) as a yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}, 318.1707$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $M+H, 318.1705$ ); $[a]_{\mathrm{D}}^{22}-26.7$ (c 0.49 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3320,2960,2240,1710,1530,1245,1030$, 750 and $700 ; \delta_{\mathrm{H}} 7.35(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.93$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 4.22(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2}\right), 1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.30$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$ and $0.94\left(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{2}\right) ; \delta_{\mathrm{C}}$ see Table 4; $m / z(\mathrm{CI}) 318\left(\mathrm{M}+\mathrm{H}^{+}, 26 \%\right), 274(100), 246$ (13) and 202 (10).

Ethyl 4-(ethoxycarbonylamino)but-2-ynoate 24. FVP of the ylide $12(200 \mathrm{mg})$ gave the title compound ( $33 \mathrm{mg}, 39 \%$ ) as a yellow oil (Found: C, 54.0; H, 6.9; N, 7.0; M + H ${ }^{+}$, 200.0913. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires C, $54.3 ; \mathrm{H}, 6.5 ; \mathrm{N}, 7.0 \% ; M+H, 200.0922$ ); $v_{\max } / \mathrm{cm}^{-1} 3340,2980,2240,1705,1520,1360,1240,750$ and $720 ; \delta_{\mathrm{H}} 4.25\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right.$ and NH$), 1.28(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$ and $1.23(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 4; $m / z$ (EI) 199 (M ${ }^{+}, 7 \%$ ), 171 (6), 154 (45), 127 (100), 98 (83), 84 (82), 66 (47), 54 (68) and 49 (93).

Ethyl (4S)-4-(ethoxycarbonylamino)pent-2-ynoate 25. FVP of the ylide $\mathbf{1 3}(475 \mathrm{mg})$ gave the title compound ( $78 \mathrm{mg}, 32 \%$ ) as a yellow oil (Found: C, 56.6; H, 7.2; N, 6.6; M + H ${ }^{+}$, 214.1083. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires $\mathrm{C}, 56.3 ; \mathrm{H}, 7.1 ; \mathrm{N}, 6.6 \% ; M+H$, 214.1079); $[a]_{\mathrm{D}}^{20}-91.0\left(c 0.695\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 3300,2960$, $2210,1695,1520,1430,1355,1235,1165,1109$ and 1044 ; $\delta_{\mathrm{H}} 4.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H \mathrm{CH}), 4.69(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 4.23(2 \mathrm{H}$, $\left.\mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 1.47(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CH} M e), 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $1.25(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{2} \mathrm{Me}$ ); $\delta_{\mathrm{C}}$ see Table 4; m/z (CI) $214\left(\mathrm{M}+\mathrm{H}^{+}, 79 \%\right), 168$ (100) and 142 (16).

Ethyl (4S)-4-ethoxycarbonylamino-5-methylhex-2-ynoate 26. FVP of the ylide 14 ( 500 mg ) gave the title compound ( 79 mg , $34 \%$ ) as a yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 242.1400. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $M+H, 242.1392$ ); $[a]_{\mathrm{D}}^{20}-49.5\left(c 0.91\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\max } / \mathrm{cm}^{-1} 3350,2960,2240,1700,1540,1460,1360,1240,1090$, 1030 and $740 ; \delta_{\mathrm{H}} 4.92(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8, \mathrm{~N} H \mathrm{CH}), 4.51(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NHCH}), 4.22\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right)$, $1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.31(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.26(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$ and $1.02\left(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{2}\right) ; \delta_{\mathrm{C}}$ see Table 4; m/z (CI) 242 $\left(\mathrm{M}+\mathrm{H}^{+}, 92 \%\right), 224(9), 213(21), 196$ (100), 170 (27), 153 (21) and 57 (44).

Ethyl (4S)-4-ethoxycarbonylamino-6-methylhept-2-ynoate 27. FVP of the ylide $15(450 \mathrm{mg})$ gave the title compound ( 77 mg , $36 \%$ ) as a yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}, 256.1556 . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $M+H$, 256.1549); $[a]_{\mathrm{D}}^{20}-74.5$ (c 0.865 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\max } / \mathrm{cm}^{-1} 3340,2460,2240,1700,1530,1370,1245,1050$ and $760 ; \delta_{\mathrm{H}} 5.15$ and $5.31(1 \mathrm{H}, 2 \times \mathrm{br} \mathrm{d}, \mathrm{NHCH}), 4.64$ and 4.81 $(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 4.22\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 4.17(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2}\right), 1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.48\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2}\right), 1.31$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.26(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$ and $0.95(6 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CHMe})_{2}$ ); $\delta_{\mathrm{C}}$ see Table 4; $m / z(\mathrm{CI}) 256\left(\mathrm{M}+\mathrm{H}^{+}, 98 \%\right), 228(11)$, 210 (100), 198 (12), 167 (15) and 57 (23).

## Ethyl (4S,5S)-4-ethoxycarbonylamino-5-methylhept-2-ynoate 28

FVP of the ylide $\mathbf{1 6}(440 \mathrm{mg})$ gave the title compound ( 80 mg , $38 \%$ ) as a yellow oil (Found: C, $61.3 ; \mathrm{H}, 8.3 ; \mathrm{N}, 5.7 ; \mathrm{M}+\mathrm{H}^{+}$, 256.1547. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires C, $61.2 ; \mathrm{H}, 8.3 ; \mathrm{N}, 5.5 \% ; M+H$, 256.1549); $[a]_{\mathrm{D}}^{20}+9.1\left(c 0.52\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3310,2960$, $2230,1710,1530,1240,1040$ and $750 ; \delta_{\mathrm{H}} 5.34$ and $5.06(1 \mathrm{H}, 2 \times$ $\mathrm{m}, \mathrm{N} H \mathrm{CH}), 4.79$ and $4.62(1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{NHCH}), 4.24(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 4.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.76-1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{HCH}), 1.27$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCH} \mathrm{H}_{2}\right), 1.00(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})$ and $0.94(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 4; $m / z(\mathrm{CI}) 256\left(\mathrm{M}+\mathrm{H}^{+}, 67 \%\right), 228$ (37), 210 (31) and 184 (11).

Ethyl (4S)-4-(isobutoxycarbonylamino)pent-2-ynoate 29. FVP of the ylide $\mathbf{1 7}(500 \mathrm{mg})$ gave the title compound ( $77 \mathrm{mg}, 33 \%$ ) as a pale yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 242.1392. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $M+H, 242.1401$ ); $[a]_{\mathrm{D}}^{23}-9.1$ ( c 0.615 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\max } / \mathrm{cm}^{-1} 3320,2970,2250,1715,1530,1470,1370,1255,1055$, 1025,780 and $755 ; \delta_{\mathrm{H}} 4.97(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.69(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH})$, $4.23\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.86\left(2 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{2} \mathrm{CH}\right), 2.92(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}$ ), $1.48(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}), 1.31(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right)$ and $0.93\left(6 \mathrm{H}, \mathrm{d}, J 7\right.$, Me); $\delta_{\mathrm{C}}$ see Table $4 ; m / z(\mathrm{CI}) 242$ $\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

Ethyl (S)-3-(1-benzoxycarbonylpyrrolidin-2-yl)propynoate 33. FVP of the ylide 18 ( 352 mg ) gave the title compound ( 90 mg , $48 \%$ ) as a pale yellow oil (Found: C, 68.0; H, 6.6; N, 4.6. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, 67.8; $\mathrm{H}, 6.4 ; \mathrm{N}, 4.7 \%$ ); $[a]_{\mathrm{D}}^{22}-114.4$ (c 1.01 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\max } / \mathrm{cm}^{-1} 3400,2980,2240,1705,1410$, $1355,1250,1180,1120,1090,750$ and $700 ; \delta_{\mathrm{H}} 7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $5.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 4.22(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2}\right), 3.44(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 2), 2.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $1.30(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 4; m/z (CI) $302\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $61 \%$ ), 272 (11), 258 (33), 168 (12), 147 (27), 111 (28), 97 (53), 86 (32), 71 (37) and 59 (100).

Ethyl (S)-3-(1-ethoxycarbonylpyrrolidin-2-yl)propynoate 34. FVP of the ylide $19(500 \mathrm{mg})$ gave the title compound ( 110 mg , $48 \%$ ) as a yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 240.1226. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $M+H$, 240.1236); $[a]_{\mathrm{D}}^{20}-137.7\left(c 0.535\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); $v_{\max } / \mathrm{cm}^{-1} 2960,2220,1700,1410,1330,1250,1120,1090,770$ and $750 ; \delta_{\mathrm{H}} 4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 4.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.16$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $1.29(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 4; $m / z(\mathrm{CI}) 240(\mathrm{M}+$ $\left.\mathrm{H}^{+}, 55 \%\right), 212$ (98), 194 (70), 167 (100), 138 (77), 94 (33) and 70 (39).

Ethyl 5-(ethoxycarbonylamino)pent-2-ynoate 35. FVP of the ylide $20(505 \mathrm{mg})$ gave the title compound ( $107 \mathrm{mg}, 49 \%$ ) as a pale yellow oil (Found: C, 56.6; H, 7.3; N, 6.4. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, $56.3 ; \mathrm{H}, 7.1 ; \mathrm{N}, 6.6 \%) ; v_{\max } / \mathrm{cm}^{-1} 3330,2980,2240$, $1700,1540,1360,1250,1070,1030$ and $750 ; \delta_{\mathrm{H}} 5.16(1 \mathrm{H}$, br s, $\mathrm{NH}), 4.22\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.38$ ( $2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{NHCH}_{2}$ ), $2.57\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2}\right.$ ), $1.31(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me})$ and $1.24(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}}$ see Table 4; m/z $213\left(\mathrm{M}^{+}\right.$, $15 \%$ ), 185 (20), 168 (40), 141 (14), 122 (31), 102 (100), 84 (29) and 66 (22).

## Reactions of acetylenic amino acid esters

Hydrobromination. (E) and (Z)-Ethyl (4S)-2-bromo-4(ethoxycarbonylamino) pent-2-enoate 36. To a solution of ethyl (4S)-4-(ethoxycarbonylamino)pent-2-ynoate $25(0.12 \mathrm{~g}, 0.56$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added a solution of hydrobromic acid in acetic acid ( $45 \% \mathrm{w} / \mathrm{v}, 0.20 \mathrm{~cm}^{3}, 1.1 \mathrm{mmol}$ ) and the mixture stirred overnight at RT. The solvent was evaporated under vacuum and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate-hexane, $1: 1$ ) to give the product $(0.13 \mathrm{~g}, 80 \%)$ as a yellow oil (Found: ${ }^{79} \mathrm{Br}-\mathrm{M}+\mathrm{H}^{+}$, 294.0347. $\mathrm{C}_{10} \mathrm{H}_{16}{ }^{79} \mathrm{BrNO}_{4}$ requires $M+H$, 294.0340); $v_{\text {max }} / \mathrm{cm}^{-1} 3320,2980,1710,1625$, $1520,1445,1330,1300,1250,1170,1090,1050,1030,865$ and $750 ; \delta_{\mathrm{H}} 6.57$ and $6.36(1 \mathrm{H}, 2 \times \mathrm{s},=\mathrm{CH}), 5.74$ and $5.61(1 \mathrm{H}, 2 \times$ $\mathrm{s}, \mathrm{NH}), 5.73$ and $4.49(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{NHCH}), 4.14$ and $4.10(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2}\right), 4.041$ and $4.042\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 1.29(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$, $\mathrm{Me}), 1.21$ and $1.16(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$ and $1.14(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$ $\delta_{\mathrm{C}} 164.1$ and $163.6\left(\mathrm{CO}_{2} \mathrm{Et}\right), 155.4(2 \times \mathrm{NHCO}), 151.7$ and $143.4(=\mathrm{CBr}), 123.5$ and $119.6(=\mathrm{CH}), 61.2$ and $61.0\left(\mathrm{OCH}_{2}\right)$, 54.9 and $48.6(\mathrm{NCH}), 20.3$ and $19.6(\mathrm{CHMe}), 14.6\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ and $\left.14.2\left(\mathrm{CH}_{2} \mathrm{Me}\right) ; m / z 296 / 294{ }^{81 / 79} \mathrm{Br}-\mathrm{M}+\mathrm{H}^{+}, 94 / 94 \%\right)$, 146 (26), 116 (35), 99 (34), 90 (48), 73 (85), 59 (53) and 46 (5).

Hydrogenation: preparation of GABA analogues. Ethyl (4S)-4-aminopentanoate 37. To a solution of ethyl (4S)-4-(benz-oxycarbonylamino)pent-2-ynoate $21(80 \mathrm{mg}, 0.29 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Pd} / \mathrm{C}$ catalyst $(80 \mathrm{mg})$ and the mixture was stirred under a hydrogen atmosphere. After 12 h the mixture was filtered through a Celite pad and the solvent removed. Chromatography on silica (methanol-diethyl ether, $2: 1$ ) gave the pure product ( $31 \mathrm{mg}, 74 \%$ ) as a yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}, 146.1179 . \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\left.M+\mathrm{H}, 146.1181\right) ;[\alpha]_{\mathrm{D}}^{25.5}$ -2.5 ( $c 0.50$ in MeOH ); $v_{\text {max }} / \mathrm{cm}^{-1} 3400,1730,1600,1505,1275$, 1188 and $1020 ; \delta_{\mathrm{H}} 7.52\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.14(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{OCH}_{2}\right), 3.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.51\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{COCH}_{2}\right), 2.17$ and $1.98\left(1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2}\right), 1.43(3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{CH} M e)$ and 1.25 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}} 172.7\left(\mathrm{CO}_{2}\right), 60.8\left(\mathrm{OCH}_{2}\right), 47.8(\mathrm{CH})$, $30.4\left(\mathrm{COCH}_{2}\right), 29.7\left(\mathrm{CH}_{2} \mathrm{CH}\right), 18.5(\mathrm{CHMe})$ and $14.2(\mathrm{Me})$; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 146\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
$( \pm)$-Ethyl 4-aminopentanoate. This was prepared as above using ethyl ( $\pm$ )-4-(benzoxycarbonylamino)pent-2-ynoate, the racemic analogue of $\mathbf{2 1}(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}$ catalyst $(100 \mathrm{mg})$ to give the title compound ( $38 \mathrm{mg}, 72 \%$ ) as an oil. Spectroscopic properties were identical to the non-racemic compound.

Ethyl (4R)-4-amino-5-methylhexanoate 38. This was prepared as above using ethyl ( $4 S$ )-4-benzoxycarbonylamino-5-methylhex-2-ynoate $22(88 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}$ catalyst ( 88 mg ) to give the title compound ( $40 \mathrm{mg}, 72 \%$ ) as colourless crystals, mp 101-102 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}+\mathrm{H}^{+}$, 174.1498. $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M+H, 174.1494$ ); $[a]_{\mathrm{D}}^{25}+7.2$ (c 0.50 in MeOH ); $v_{\text {max }} / \mathrm{cm}^{-1} 3340,1725,1640,1540,1260,1180,1100,1040$ and $800 ; \delta_{\mathrm{H}} 7.96\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{NH}_{2}\right), 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2}\right), 3.14(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCH}), 2.62\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{COCH}_{2}\right), 2.02\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}+\mathrm{CH}_{2}\right)$, $1.25\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.10(3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{CH} M e)$ and 1.08 ( $3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{CHMe}$ ); $\delta_{\mathrm{C}} 172.5\left(\mathrm{CO}_{2}\right), 60.7\left(\mathrm{OCH}_{2}\right), 57.3(\mathrm{NCH})$, $30.52(\mathrm{CH}), 30.48\left(\mathrm{COCH}_{2}\right), 25.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 18.1(\mathrm{CHMe})$, $18.0(\mathrm{CHMe})$ and $14.2\left(\mathrm{OCH}_{2} \mathrm{Me}\right)$; $m / z(\mathrm{CI}) 174\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $100 \%$ ), 128 (8) and 102 (6).

Ethyl (4R)-4-amino-6-methylheptanoate 39. This was prepared as above using ethyl (4S)-4-benzoxycarbonylamino-6-methylhept-2-ynoate 23 ( $94 \mathrm{mg}, 0.30 \mathrm{mmol}$ ) and $\mathrm{Pd} / \mathrm{C}$ catalyst $(94 \mathrm{mg})$ to give the title compound ( $39 \mathrm{mg}, 70 \%$ ) as colourless crystals, mp 124-125 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}+\mathrm{H}^{+}$, 188.1644. $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 188.1650$ ); $[a]_{\mathrm{D}}^{25}+6.9$ (c 0.50 in $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3390,1730,1600,1510,1275,1190$ and $1020 ; \delta_{\mathrm{H}} 8.93\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.37$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 2.59\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{COCH}_{2}\right), 2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.88 and $1.70\left(2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{2}\right), 1.49(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.25(3 \mathrm{H}, \mathrm{t}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $0.95\left(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{2}\right) ; \delta_{\mathrm{C}} 172.5\left(\mathrm{CO}_{2}\right)$, $60.7\left(\mathrm{OCH}_{2}\right), 50.2(\mathrm{NCH}), 42.1\left(\mathrm{CHCH}_{2}\right), 30.1\left(\mathrm{COCH}_{2}\right), 28.2$ $\left(\mathrm{CH}_{2}\right), 24.4(\mathrm{CH}), 22.4(\mathrm{CHMe}), 22.2(\mathrm{CHMe})$ and 14.2 $\left(\mathrm{OCH}_{2} \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 188\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
Ethyl (S)-3-(pyrrolidin-2-yl)propanoate 40. This was prepared as above using ethyl ( $S$ )-3-(1-benzoxycarbonylpyrrolidin-2-yl)propynoate 33 ( $90 \mathrm{mg}, 0.30 \mathrm{mmol}$ ) and $\mathrm{Pd} / \mathrm{C}$ catalyst $(90 \mathrm{mg}$ ) to give the title compound ( $40 \mathrm{mg}, 78 \%$ ) as a yellow oil (Found: $\mathrm{M}+\mathrm{H}^{+}$, 172.1339. $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M+\mathrm{H}$, 172.1338); $[a]_{\mathrm{D}}^{25}-8.6$ (c 1.0 in MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3440,2960$, $2750,2500,1730,1630,1450,1420,1375,1280,1190$ and 1025 ; $\delta_{\mathrm{H}} 8.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.09\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right), 3.61(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}), 3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.57\left(2 \mathrm{H}, \mathrm{t}, J 8, \mathrm{COCH}_{2}\right), 2.05(5 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{CH}_{2}$ and 1 H of $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{CH}\right), 1.71\left(1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{CH}, \mathrm{m}\right)$ and $1.26(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}} 172.3\left(\mathrm{CO}_{2}\right), 60.8\left(\mathrm{OCH}_{2}\right), 59.8(\mathrm{NCH})$, $44.6\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right)$ and $14.2(\mathrm{Me}) ; m / z(\mathrm{CI}) 172\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right) ; m / z$ (EI) 170 $\left(\mathrm{M}-\mathrm{H}^{+}, 6 \%\right), 126$ (14), 84 (6) and 70 (100).

## Preparation of Mosher amides

These derivatives were prepared by a modification of the method by Mosher and co-workers ${ }^{14}$ as illustrated by the example below. In the spectra * denotes the minor diastereomer.

Derivative of ethyl (4S)-4-aminopentanoate 37. A solution of ( $S$ )- $\alpha$-methoxy- $\alpha$-trifluoromethylphenylacetyl chloride ( 156 mg , 0.62 mmol ) in dry toluene ( $2 \mathrm{~cm}^{3}$ ) under a nitrogen atmosphere was cooled to $0^{\circ} \mathrm{C}$. DMAP ( $76 \mathrm{mg}, 0.62 \mathrm{mmol}$ ) and $37(30 \mathrm{mg}$, 0.21 mmol ) in dry toluene ( $2 \mathrm{~cm}^{3}$ ) were then added and the mixture stirred at RT for 2 h . The reaction mixture was recooled to $0{ }^{\circ} \mathrm{C}$ and washed successively with $1 \mathrm{M} \mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$ and saturated $\mathrm{NaHCO}_{3}\left(1 \mathrm{~cm}^{3}\right)$. The organic phase was dried and concentrated under vacuum to give the Mosher amide derivative which was analysed without further purification; $\delta_{\mathrm{H}} 7.59$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.81$ and $6.74^{*}(1 \mathrm{H}, 2 \times \mathrm{d}, J 8$, $\mathrm{NH}), 4.05\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}+\mathrm{OCH}_{2}\right), 3.41$ and $3.38^{*}(3 \mathrm{H}, 2 \times \mathrm{q}$, $J$ 2, OMe), $2.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.25$ $\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and 1.20 and $1.17^{*}(3 \mathrm{H}, 2 \times \mathrm{d}, J 6$, $\mathrm{CHMe}) ; \delta_{\mathrm{C}} 173.3$ and $173.2(\mathrm{CO}), 165.83$ and $165.78\left(\mathrm{CO}_{2}\right)$, 132.8 and $132.6(\mathrm{C}-1$ of Ph$), 129.5(\mathrm{C}-4$ of Ph$), 128.59$ and 128.54 ( $2 \mathrm{C}, \mathrm{Ph}$ ), 127.72 and 127.65 ( $2 \mathrm{C}, \mathrm{Ph}$ ), 124.0 (q, J 290, $\mathrm{CF}_{3}$ ), $84.1\left(\mathrm{q}, J 26, \mathrm{CCF}_{3}\right), 60.6\left(\mathrm{OCH}_{2}\right), 54.9(\mathrm{OMe}), 45.4$ $(\mathrm{NCH}), 31.4$ and $31.3\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 20.85$ and 20.77 $(\mathrm{CHMe})$ and $14.2\left(\mathrm{OCH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{F}}-70.46$ and $-70.51^{*}$; de $=$ $76 \%$.

Derivative of ethyl (4R)-4-amino-5-methylhexanoate 38. This was prepared as above using 38 to give the Mosher amide derivative as an oil; $\delta_{\mathrm{H}} 7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.69$ and $6.56^{*}(1 \mathrm{H}, 2 \times \mathrm{brd}, J 8, \mathrm{NH}), 4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.82$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 3.44$ and $3.39^{*}(3 \mathrm{H}, 2 \times \mathrm{q}, J 2, \mathrm{OMe}), 2.20$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.20$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 0.94(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e)$ and $0.92(3 \mathrm{H}, \mathrm{d}, J 6$, CHMe); $\delta_{\mathrm{C}} 173.6(\mathrm{CO}), 166.4\left(\mathrm{CO}_{2}\right), 133.1(\mathrm{~d}, J 17, \mathrm{C}-1$ of Ph$)$, $129.6(\mathrm{Ph}), 128.7(2 \mathrm{C}, \mathrm{d}, J 4, \mathrm{Ph}), 127.7(2 \mathrm{C}, \mathrm{d}, J 5, \mathrm{Ph}), 124.0$ (q, $J 290, \mathrm{CF}_{3}$ ), $84.2\left(\mathrm{q}, J 26, C C F_{3}\right), 60.6\left(\mathrm{OCH}_{2}\right), 55.2(\mathrm{NCH})$, $54.2(\mathrm{OMe}), 39.5(\mathrm{CH}), 32.0\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 19.0(\mathrm{CHMe})$, $17.8(\mathrm{CHMe})$ and $14.2\left(\mathrm{OCH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{F}}-69.68$ and $-69.86^{*}$; de $=85 \%$.

Derivative of ethyl (4R)-4-amino-6-methylheptanoate 39. This was prepared as above 39 to give the Mosher amide derivative as an oil; $\delta_{\mathrm{H}} 7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 4.07\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHN}\right.$ and $\left.\mathrm{OCH}_{2}\right), 3.39$ and $3.38^{*}(3 \mathrm{H}, 2 \times$ $\mathrm{q}, J 2, \mathrm{OMe}), 2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 1.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.64$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$, 0.94 ( $3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}$ ) and 0.92 ( $3 \mathrm{H}, \mathrm{d}, J 6$, CHMe); $\delta_{\mathrm{C}} 173.99^{*}$ and $173.86(\mathrm{CO}), 166.3\left(\mathrm{CO}_{2}\right), 132.4(\mathrm{C}-1$ of Ph$)$, $129.4\left(\mathrm{C}-4\right.$ of Ph ), $128.6^{*}$ and 128.5 ( $2 \mathrm{C}, \mathrm{Ph}$ ), 127.6* and 127.4 ( $2 \mathrm{C}, \mathrm{Ph}$ ), 123.8* and $123.2\left(2 \times \mathrm{q}, J 288, \mathrm{CF}_{3}\right), 84.1\left(\mathrm{q}, \mathrm{CCF}_{3}\right.$, $J 26), 60.8\left(\mathrm{OCH}_{2}\right), 55.5(\mathrm{OMe}), 47.6(\mathrm{NCH}), 44.4\left(\mathrm{CHCH}_{2}\right)$, $30.8\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 24.9(\mathrm{CH}), 23.0(\mathrm{CHMe}), 22.0(\mathrm{CHMe})$ and $14.1\left(\mathrm{OCH}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{F}}-69.68$ and $-69.86^{*}$; de $>85 \%$.

Derivative of ethyl ( $S$ )-3-(pyrrolidin-2-yl)propanoate 40. This was prepared as above using 40 to give the Mosher amide derivative as an oil; $\delta_{\mathrm{H}} 7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.34(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.18$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHN}\right.$ and $\left.\mathrm{OCH}_{2}\right), 3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.42(3 \mathrm{H}, \mathrm{d}$, $J<2$, OMe), $2.36(4 \mathrm{H}, \mathrm{m}), 1.85(2 \mathrm{H}, \mathrm{m}), 1.70(2 \mathrm{H}, \mathrm{m}), 1.59$ $(2 \mathrm{H}, \mathrm{m})$ and $1.26(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}) ; \delta_{\mathrm{C}} 173.6(\mathrm{CO}), 164.6\left(\mathrm{CO}_{2}\right)$, 132.3 (C-1 of Ph), 130.6 (Ph), 128.7 (2 C, d, J4, Ph), 127.9 (2 C, $\mathrm{d}, J 5, \mathrm{Ph}), 124.1\left(\mathrm{q}, J 290, \mathrm{CF}_{3}\right), 84.3\left(\mathrm{q}, J 26, \mathrm{CCF}_{3}\right), 60.8$ $\left(\mathrm{OCH}_{2}\right), 58.4(\mathrm{NCH}), 55.4(\mathrm{OMe}), 46.1\left(\mathrm{CHCH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right)$, $28.5\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right)$ and $14.2(\mathrm{Me}) ; \delta_{\mathrm{F}}-71.96$; de $>95 \%$.

## Acknowledgements

We thank EPSRC and GlaxoSmithKline for a CASE studentship (T. M.)

## References

1 Part 16: R. A. Aitken, M. J. Drysdale, L. Hill, K. W. Lumbard, J. R. MacCallum and S. Seth, Tetrahedron, 1999, 55, 11039.

2 Review, R. A. Aitken and A. W. Thomas, in Chemistry of the functional groups, Supplement A3, ed. S. Patai, Wiley, New York, 1997, 473.
3 R. A. Aitken, C. E. R. Horsburgh, J. G. McCreadie and S. Seth, J. Chem. Soc., Perkin Trans. 1, 1994, 1727.

4 R. A. Aitken, H. R. Cooper and A. P. Mehrotra, J. Chem. Soc., Perkin Trans. 1, 1996, 475.
5 S. A. Abdulganeeva and K. B. Erzhanov, Russ. Chem. Rev., 1991, 60, 676.

6 C. Walsh, Tetrahedron, 1982, 38, 871.
7 P. M. Beart and G. A. R. Johnston, Aust. J. Chem., 1972, 25, 1359.
8 A. G. Doutheau, J. Gore and G. Quash, EP 133 407, 1985.
9 B. W. Metcalf, P. Bey, C. Danzin, M. J. Jung, P. Casara and J. P. Vevert, J. Am. Chem. Soc., 1978, 100, 2551; P. Casara, C. Danzin, B. W. Metcalf and M. J. Jung, J. Chem. Soc., Chem. Commun., 1982, 1190; P. Casara, C. Danzin, B. Metcalf and M. Jung, J. Chem. Soc., Perkin Trans. 1, 1985, 2201.
10 B. W. Metcalf and P. Casara, Tetrahedron Lett., 1975, 3337; A. B. Tabor, A. B. Holmes and R. Baker, J. Chem. Soc., Chem. Commun., 1989, 1025; J. R. Burke and R. B. Silverman, J. Am. Chem. Soc., 1991, 113, 9329.
11 Preliminary communication: R. A. Aitken and N. Karodia, Chem. Соттии., 1996, 2079.
12 H. H. Wasserman, D. S. Ennis, C. A. Blum and V. M. Rotello, Tetrahedron Lett., 1992, 33, 6003; H. H. Wasserman, D. S. Ennis, P. L. Power and M. J. Ross, J. Org. Chem., 1993, 58, 4785.

13 M. T. Reetz, T. J. Strack, J. Kanand and R. Goddard, Chem. Comтип., 1996, 733.
14 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543; H. Niwa, T. Ogawa, O. Okamoto and K. Yamada, Tetrahedron, 1992, 48, 10531.
15 M. Smrcina, P. Majer, E. Majerová, T. A. Guerassina and M. A. Eissenstat, Tetrahedron, 1997, 53, 12867.
16 J.-N. Denis, S. Tchertchian, A. Tomassini and Y. Vallée, Tetrahedron Lett., 1997, 38, 5503.
17 K. Yamada, M. Takeda and T. Iwakuma, J. Chem. Soc., Perkin Trans. 1, 1983, 265.
18 M. Bergmann and L. Zervas, Ber. Dtsch. Chem. Ges., 1932, 65, 1192.
19 W. Grassmann and E. Wünsch, Chem. Ber., 1958, 91, 462.
20 A. Hantzsch and W. V. Metcalf, Ber. Dtsch. Chem. Ges., 1896, 29, 1680.

21 K. Freudenberg and M. Meister, Liebigs Ann. Chem., 1935, 518, 86.

22 E. Fischer and W. Axhausen, Liebigs Ann. Chem., 1905, 340, 123.
23 F. M. F. Chen and N. L. Benoiton, Can. J. Chem., 1987, 65, 1224.
24 M. R. Vernsten and M. B. Moore, J. Am. Chem. Soc., 1953, 75, 1320.
25 Y. Kita, J. Haruta, H. Tagawa and Y. Tamura, J. Org. Chem., 1980, 45, 4519.
26 L. L. Braun and J. H. Looker, J. Am. Chem. Soc., 1958, 80, 359.
27 R. A. Aitken and J. I. Atherton, J. Chem. Soc., Perkin Trans. 1, 1994, 1281.

